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A B S T R A C T   

The purpose of this paper is to investigate the performance of a certain family of low-order quadrilateral finite 
elements in the solution of the stationary Navier-Stokes equations governing incompressible fluid flows. These 
finite elements are derived from the ‘overlapping finite elements’, first developed for the solution of problems in 
solid mechanics [5,9,48] and incorporate features of both meshfree and traditional finite element methods. One 
of their most remarkable properties is the insensitivity to mesh distortions. Also, since the Shepard functions are 
replaced by a suitable interpolation, the resulting basis functions are entirely polynomial, which allows the 
numerical integration of the weak forms to be performed with few integration points [6,49]. We also discuss the 
theoretical reasons for the stability of the solutions, that is, the absence of spurious pressure modes, and show 
that the proposed discretization scheme passes the relevant inf-sup test.   

1. INTRODUCTION 

The finite element method has a long history of applications in 
computational fluid dynamical calculations. The large amount of liter-
ature devoted to this topic shows the interest in the finite element so-
lution methods [3,17,23,50]. 

In order to conceive of a numerical method that has the potential to 
be used in engineering practice, we look for a procedure satisfying four 
criteria: (1) High predictive capability even in distorted meshes, (2) Low 
overall solution effort, (3) Ease of imposing Dirichlet boundary condi-
tions, (4) Robustness and reliability, e.g. no dependence on adjustable 
parameters. 

Standard finite element methods (based on either nodal or vector 
basis functions) do not entirely satisfy criterion (1), because they require 
a mesh formed of elements with a reasonable degree of quality, i.e., the 
shape of the triangles and quadrilaterals (or tetrahedra and bricks, 
prisms) must be as regular as possible. Consequently, a considerable 
effort must be spent to ensure that mesh generators produce a suitable 
outcome (elements with either too small or too large internal angles 
should be avoided) [19,26]. 

Meshfree (or meshless) methods in principle do not suffer from this 
issue since they are not based on meshes. However, meshfree methods 
may employ basis functions which are non-polynomial, like the Mesh-
less Local Petrov-Galerkin (MLPG) [1,41–43], and the Method of Finite 

Spheres (MFS) [31,35]. Then the process of numerical integration re-
quires many quadrature points, rendering the procedures quite expen-
sive, which means that these methods do not satisfy criterion (2). Other 
meshfree methods, such as the Smoothed-Particle Hydrodynamics (SPH) 
and the Element-Free Galerkin (EFG) methods suffer from difficulties in 
imposing the Dirichlet boundary conditions directly (the latter generally 
uses moving least squares (MLS) basis functions, which do not satisfy the 
Kronecker delta property [40]). In this way, they fail to satisfy criterion 
(3) and the SPH schemes being based on numerical factors also do not 
satisfy criterion (4). 

In discontinuous Galerkin methods, the local approximation spaces 
within the elements are usually discontinuous across the element in-
terfaces, and the continuity is imposed through an “appropriate” selec-
tion of numerical fluxes and stabilization parameters [21,39,47]. In this 
way, these schemes fail to satisfy criterion (4). 

In this work, we present a method that satisfies the four criteria listed 
above. The method is based on the concept of ‘overlapping finite ele-
ments’, abbreviated as ‘OFE’, recently introduced for the analysis of 
problems in solid mechanics [5,9,48]. The OFE method combines 
desirable features of both finite element and meshfree methods (in 
particular, the method of finite spheres (MFS), of which it is an evolution 
[35]). As the traditional FEM, the OFE method also uses polynomial 
basis functions, which allows the numerical integration to be performed 
with relatively few quadrature points, and also, as in the traditional 
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FEM, the Dirichlet boundary conditions are directly imposed. As for 
meshfree methods, the OFE has a very reduced dependence on the 
quality of the mesh, hence very distorted elements may be used around 
complicated geometries, like holes and interfaces, and an ‘inexpensively 
generated mesh’ can be used. Since the procedure is not dependent on 
adjustable factors, it is also robust and reliable and all four criteria are 
satisfied. The effectiveness of the OFE method has been demonstrated in 
a number of publications [6,15,27–29,32,36–38,49]. 

A more comprehensive discussion of the OFE in comparison with 
other numerical methods is given in the references cited above. We shall 
focus here on adopting the OFE to the solution of problems in fluid 
dynamics. 

We are interested in the inflow/outflow type of problems, in which 
the boundary of the domain is divided into two parts: On the first part, 
Dirichlet conditions are prescribed, which model both the inflow of the 
fluid into the domain and also the no-slip condition along the walls. On 
the second part of the boundary, the outflow of the fluid from the 
domain is imposed. We are thus led to the traditional 2-field mixed 
formulation of the Navier-Stokes equations, with the pair of unknowns 
(u, p) where u is the velocity field and p is the pressure. The formulation 
is given in Section 2. 

The discretization procedure and the basis functions used in the 
finite-dimensional representation of u and p are discussed in Section 3. 
In Section 4, we consider the inf-sup condition governing the well- 
posedness of the discrete problems and perform some studies using 
the inf-sup test concerning the convergence and stability of the solutions 
using regular and distorted meshes. Based on these studies we identify 
pairs of interpolations for OFE that are stable and robust, i.e., these OFE 
satisfy the inf-sup condition without the need for stabilization terms and 
tunable parameters. Finally we illustrate the use and effectiveness of the 
proposed OFE in the solutions of some fluid dynamical problems. 

2. The problem 

2.1. Strong form 

We are interested in solving the dimensionless Navier-Stokes equa-
tions governing incompressible fluid flows, in a bounded polygonal 
(Lipschitz) domain Ω ⊂ R2: 

Find (u, p) such that 

−
1

Re
∇2u + (u ⋅ ∇)u +∇p = f, in Ω,

∇ ⋅ u = 0, in Ω, (2a)  

u = gD, on ΓD,

n̂ ⋅ ¯̄σ = gN , on ΓN .

The boundary ∂Ω is such that ∂Ω = Γ̄D ∪ Γ̄N, where ΓD and ΓN are open 
subsets of ∂Ω. We assume that ΓD ∕= ∅ and ΓN ∕= ∅. Moreover, ΓD ∩ ΓN =

∅. In (2a), Re is the Reynolds number, f is the body force, and gD is some 
known function to be prescribed at the Dirichlet boundary. Also 

¯̄σ =
1

Re
∇u − p¯̄I,

and the function gN is given. However, in inflow/outflow problems, we 
usually have gN = 0. Finally, n̂ is the outward-pointing unit normal 
vector defined along the boundary ∂Ω, and ̄̄I is the identity tensor. 

2.2. Weak form 

Let L2(Ω) denote the Lebesgue space of all square integrable func-
tions defined on Ω, and let H1(Ω) denote the Sobolev space formed by all 
functions in L2(Ω) whose (weak) first derivatives are also in L2(Ω). We 

now introduce the trial space: 

X =
{

v ∈ H1(Ω) | v|ΓD
= gD

}
, (2b)  

of all vector functions v in H1(Ω) = H1(Ω) × H1(Ω) whose trace along 
ΓD is equal to the given function gD. The space of functions used for 
testing is H1

0,ΓD
(Ω) = H1

0,ΓD
(Ω)× H1

0,ΓD
(Ω), in which H1

0,ΓD
(Ω) denotes the 

set of all functions in H1(Ω) whose trace along ΓD is equal to zero [14]. 
Assuming that the velocity field u belongs to X, that the pressure field p 
belongs to L2(Ω), and that the body force f belongs to L2(Ω) = L2(Ω)×

L2(Ω), we can use Green’s identities to show that the weak form of 
problem (2a) is: 

Find (u, p) ∈ X × L2(Ω) such that 
∫

Ω

1
Re

∇u : ∇vdΩ +

∫

Ω
(u ⋅ ∇u)⋅ vdΩ −

∫

Ω
p∇ ⋅ vdΩ  

−

∮

∂Ω
(n̂ ⋅ ¯̄σ)⋅ vdΓ =

∫

Ω
f ⋅ vdΩ, for any v ∈ H1

0,ΓD
(Ω), (2c)  

∫

Ω
q ∇ ⋅ u dΩ = 0, for any q ∈ L2(Ω),

where u|ΓD
= gD. We note that the second equation in (2a) – the 

incompressibility condition – is imposed weakly in (2c). Note also that the 
boundary integral in (2c) is zero due to the choices of gN and v. 

2.3. Finite dimensional case 

We introduce generic finite-dimensional (or ‘discrete’) subspaces 
Xh ⊂ X in (2b) and Yh ⊂ L2(Ω). The finite-dimensional counterpart to 
problem (2c) is given by: 

Find (uh, ph) ∈ Xh × Yh such that 
∫

Ω

1
Re

∇uh : ∇vhdΩ +

∫

Ω
(uh ⋅ ∇uh)⋅ vhdΩ −

∫

Ω
ph∇ ⋅ vhdΩ  

=

∫

Ω
f ⋅ vhdΩ, for any vh ∈ X0

h, (2d)  

∫

Ω
qh ∇ ⋅ uh dΩ = 0, for any qh ∈ Yh.

The Dirichlet boundary conditions are easily imposed by simply fixing 
the value of some coefficients (degrees of freedom, or DoF’s) on ΓD, 
which means that the linear subspace X0

h is constructed from Xh simply 
by making the DoF’s along ΓD equal to zero, so that X0

h ⊂ H1
0,ΓD

(Ω). The 
solution of the nonlinear problem (2d) can be obtained using a number 
of different solution schemes, like Newton-Raphson iterations and var-
iations thereof, and Picard iterations, see e.g [3]. In each case, the 
important point is that the solution needs to be obtained to sufficient 
accuracy. The discretized fields can be expanded as uh = H̄uŨ and ph =

H̄pP̃, where H̄u and H̄p are suitable matrices collecting the velocity and 
pressure basis functions, respectively, and Ũ and P̃ are vectors collecting 
the DoF’s. The testing functions are expanded likewise. Substitution into 
(2d), together with a treatment for the nonlinearity (see above), allows 
us to obtain the system of linear algebraic equations which yields the 

next solution vectors (Ũ
n+1 

and P̃
n+1

) in terms of the previous solution 
vectors (Ũ

n 
and P̃

n
). Assuming that this iterative procedure calculates 

the DoF vectors Ũ
n 

and P̃
n 

for n = 1, 2, 3, ⋯, we then assemble (i.e., 
concatenate) the solution vectors Ũ

n 
and P̃

n 
into the solution vector ̃W

n
, 

thus forming a sequence 
(
W̃

1
, W̃

2
, W̃

3
,⋯

)
. The relative error is given as 

εn = ‖W̃n+1 − W̃n‖/‖W̃n‖, where ‖ ⋅ ‖ is the Euclidean norm of a vector. 
The iteration is continued until convergence is reached to a reasonable 
tolerance, in our solutions given until εn < 10− 6. 
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We will not investigate the existence and uniqueness of the velocity 
field uh in (2d) since this condition is surely satisfied in our solution, but 
will instead investigate whether a unique solution of the pressure field is 
guaranteed. That is, if the discrete problem (2d) admits some solution 
pair (uh, ph), there could in principle exist another solution pair with the 
same velocity field uh and a different pressure field rh. This possibility is 
ruled out iff the following inf-sup condition is satisfied: 

There is some constant βh > 0 such that 

inf
qh∈Yh\{0}

sup
vh∈X0

h\{0}

∫

Ωqh∇ ⋅ vhdΩ
‖qh‖L2(Ω)‖vh‖H1(Ω)

≥ βh, (2e)  

where ‖ ⋅ ‖L2(Ω) and ‖ ⋅ ‖H1(Ω) denote the norms in L2(Ω) and H1(Ω), 

respectively. Hence if (2e) is satisfied spurious pressure modes will not 
be present [3]. The discrete inf-sup condition (2e) has to be proven for 
each particular choice of Xh and Yh. For some pairs of traditional finite 
elements, the inf-sup condition (2e) can be analytically proven to hold 
[3,20,22]. However, these proofs are difficult to obtain, and a proof may 
be out of reach for a given pair of spaces Xh and Yh, as for the case using 
the OFE basis functions. Hence we shall use a numerical test, known as 
the Chapelle-Bathe test or inf-sup test presented in [16]. This test is not 
an analytical proof that the inf-sup condition is satisfied for a specific 
pair of Xh and Yh, but we judiciously use that if the inf-sup test is not 
passed, the inf-sup condition is not satisfied. Since the publication of the 
test, it has been successfully applied to a multitude of problems, in both 
classical finite element [4,11,12,33] and meshfree analyses [18,45,46]. 

3. Finite-dimensional function spaces for overlapping finite 
elements 

3.1. OFE subspaces 

Let us consider a finite-dimensional space for approximating a 
generic scalar function sh defined on Ω using the quadrilateral OFE 
proposed in [36]. Suppose that a total of N nodes have been scattered 
throughout Ω and along its boundary ∂Ω. Let Q h denote a partition of the 
computational domain Ω into quadrilateral cells, so that 

Ω̄ =
⋃

e
Ω̄e

,

where the index ‘e’ runs from 1 to the total number of cells in Q h, and 
where Ωe is the interior of the cell indexed by ‘e’. For each node I = 1,⋯,

N, its location within Ω̄ is denoted by xI = (xI, yI). The support set N I is 
given by the union of the nodes of all cells e in Q h that contain node I as a 
vertex, see Fig. 1. Let rI be the maximum distance between xI and the 
nodes in N I, i.e., 

rI = max
J∈N I

‖xI − xJ‖, (3a)  

see Fig. 1. As in the method of finite spheres [25,31,35,44–46], each 
node I = 1,⋯,N carries a set of linearly-independent local basis func-
tions 

{
lI,1, lI,2,⋯

}
, together with a set of coefficients (or DoF’s) 

{
s̃I,1, s̃I,2⋯,

}
so that we obtain a linear combination: 

Fig. 1. A portion of some arbitrary partition Q h. The four cells indicated in blue 
contain node I as a vertex. The nodes in the support set N I are given by the 
union of the nodes in these four blue cells, and are indicated by black dots (in 
addition to node I itself). The largest distance between node I and the nodes in 
N I is indicated by a dashed red line. All nodes in the partition have their 
associated support sets, see [27]. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. A cell Ωe, indexed by the number ‘e’. The nodes at the four vertices are 
indicated by the (local) indices 1, 2, 3, and 4. The DoF’s (coefficients ̃sI,m in the 
expansion (3b)) are assigned to these nodes only. The points 5̄, 6̄, 7̄, and 8̄ are 
located at the midpoints of the edges; there are no DoF’s assigned to them, since 
they are used just as an aid to construct the serendipity shape functions ĥJI in 
(3e), see [36]. 

Table 1 
Nomenclature of OFE spaces.  

Space Local bases 

OFE0 {1},
OFE1 {1,XI ,YI},

OFE2 
{

1,XI ,YI ,X2
I ,XIYI ,Y2

I
}
.

Fig. 3. Geometry (dimensionless units) and boundary conditions relative to the 
problem from Section 4. The inlet and the outlet are shown in red and green, 
respectively, whereas the no-slip walls are shown in blue. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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SI = lI,1 s̃I,1 + lI,2 s̃I,2 + ⋯ =
∑

m
lI,ms̃I,m, (3b)  

associated with each node I = 1,⋯,N, and defined for any point x = (x,
y) within Ω̄. The coefficients ̃sI,1, s̃I,2⋯, are the DoF’s in the expansion of 
sh. In the OFE approximations, we use monomials in the local bases as: 

SI = 1 ⋅ s̃I,1 + XI s̃I,2 + YI s̃I,3 + ⋯, (3c)  

where XI = (x − xI)/δI, YI = (y − yI)/δI, and δI = rI/2 [36]. We always 
use lI,1 ≡ 1, i.e., the first local basis function lI,1 is identical to the unity. 
Given a cell e in Q h, suppose its four ‘physical’ nodes (each node is 
originally given a global index between 1 and N) are now numbered 

simply as 1, 2,3, and 4 (i.e., we use a local numbering), see Fig. 2. The 
points marked with an overbar 5̄, 6̄, 7̄, and 8̄ are not physical nodes, but 
indicate the midpoints of the edges of the cell e. At any point x = (x, y)
within Ωe, our generic scalar function sh is approximated as: 

sh =
∑4

I=1
ρISI =

∑4

I=1

∑

m
ρI lI,ms̃I,m, (3d)  

where the SI are those in (3b). The ‘modulating’ functions ρI are given 
by: 

ρI = hI + β
∑

J
(hJ − hI)ĥJI , (3e) 

Fig. 4. The finite element reference solution (uRef , pRef ), provided by the traditional Q2/Q1 pair, using a uniform mesh with 128 × 128 square elements. (a) Hor-
izontal component of the velocity field. (b) Vertical component of the velocity field. (c) The pressure field. (d) Arrows indicating the direction of the velocity field. 
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for I = 1,⋯,4, where β = 0.01 see [36]. The function hI is the traditional 
4-node bilinear shape function associated with node I, and the index J 
runs over the two nodes directly connected to node I. Finally, ĥJI is the 
traditional 8-node serendipity shape function associated with the mid- 
point between nodes J and I [3]. For example, ρ1 = h1 +

β(h2 − h1)ĥ5̄ + β(h4 − h1)ĥ8̄, since nodes 2 and 4 are directly connected 
to node 1, whereas ̄5 and ̄8 are the midpoints between nodes 2 and 1, and 
between nodes 4 and 1, respectively, see Fig. 2. Considering (3d), it is 
seen that the interpolations give continuity across the edges of Q h, i.e., 
sh ∈ C(Ω̄). 

Since the monomials XI and YI vanish at node I (see (3c)), we also see 
that sh(xI) = s̃I,1, for I = 1,⋯,N. The imposition of essential boundary 
conditions is thus simple: we simply set the first DoF at each node along 

ΓD to be equal to the prescribed condition calculated at xI, and set the 
other DoF’s equal to zero. The result is that the essential boundary 
conditions are enforced as in the traditional FEM. 

3.2. OFE subspaces for the velocity and pressure fields 

In this paper, the approximation of scalar quantities (components of 
the velocity field and the pressure) will be based on sets of constant 
(degree 0), linear (degree 1), and quadratic (degree 2) monomials in the 
local bases 

{
lI,1, lI,2,⋯

}
associated with each node I, see (3c). The 

resulting spaces are listed in Table 1. 
All N nodes in the mesh use local bases with the same number of 

monomials, so approximations based on the spaces OFE0, OFE1, and 
OFE2 yield a total of N, 3N, and 6N coefficients (DoF’s), respectively, all 

Fig. 5. Finite element solution, calculated using the traditional Q1/Q0 pair, on a uniform mesh formed by 32 × 32 square elements. (a) Horizontal component of the 
velocity field. (b) Vertical component of the velocity field. (c) The pressure field, contaminated by the checkerboard pattern. (d) The inf-sup curves calculated in a 
sequence of uniform meshes of N × N elements each. For the Q1/Q0 pair, the inf-sup constants βh present a steady decay as h becomes smaller. This behavior is in 
stark contrast with that regarding the OFE1/Q0 pair, for which the inf-sup constants attain a ‘plateau’. 
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to be calculated using sparse matrices, as in the standard FEM. The 
subscript ‘1’ in OFE1 indicates that each node carries a full degree 1 
polynomial, and likewise for the other cases. From now on, the word 
‘element’ will be used to denote a cell together with an interpolation, so 
that different choices for the interpolations yield different elements. In 
this paper, the components of the discrete velocity field uh =

(
uh,1, uh,2

)

are calculated within the OFE1 space; we call the resulting space 
OFE1 = OFE1 × OFE1 (bold letters denoting a vector quantity), which 
uses 3N DoF’s per component (and thus a total of 6N DoF’s in the 
calculation of vector uh). We shall make a brief mention to the space 
OFE2 = OFE2 × OFE2, which uses 6N DoF’s per component (and thus 
12N DoF’s in the calculation of uh). The discrete pressure field ph is 
calculated within the OFE0 space. The OFE spaces just mentioned yield 
continuous approximations. However, we shall also employ a 

discontinuous approximation for the pressure field in which ph is given 
by the traditional piecewise constant functions [3]. This space will be 
denoted as Q0, and the number of DoF’s is of course equal to the number 
of elements in the partition Q h. 

3.3. Geometrical modeling and numerical integration 

Consider the biunit square ω = {(ξ,η) | − 1≤ ξ≤1 and − 1≤ η≤ 1}. 
In this paper, the geometry of the cell Ωe in Fig. 2 is described by the 
following transformation, which takes a point (ξ,η) in ω and returns a 
point (x,y) in Ωe: 
[

x
y

]

=
∑4

I=1
hI(ξ, η)

[
xe

I

ye
I

]

,

Fig. 6. Finite element solution, calculated using the OFE1/Q0 pair, on a uniform mesh formed by 32 × 32 square elements. (a) Horizontal component of the velocity 
field. (b) Vertical component of the velocity field. (c) The pressure field, this time not contaminated by the checkerboard pattern. 
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where 
(
xe

I , ye
I
)
, I = 1,⋯, 4 are the ‘physical’ coordinates of the I-th node 

(vertex) in Ωe (assuming a local numbering scheme, as in Fig. 2), and the 
hI are the bilinear basis functions defined on ω. When treating the weak 
forms, the integral of any quantity g over the ‘physical’ cell Ωe can be 
evaluated as: 
∫

Ωe
g(x, y)dΩ =

∫ 1

− 1

∫ 1

− 1
g(x(ξ, η), y(ξ, η) )|det Je|dξdη,

where det Je is the determinant of the Jacobian matrix associated with 
the tranformation given above. The derivatives in g with respect to the 
‘physical’ coordinates x and y must be expressed in terms of the de-
rivatives with respect to ξ and η through judicious use of the chain rule, 
as in standard finite element calculations. If the velocity field is 

approximated within the space OFE1, the integral above is evaluated 
using a 3-point Gaussian quadrature rule along ξ and along η, resulting 
in 9 integration points per element. On the other hand, if the approxi-
mation is made within the space OFE2, we use a 5 x 5 rule [36]. We are 
thus led to a very efficient integration process, in stark contrast with the 
majority of meshfree methods [40], for which the integration process 
requires a large number of points, when the basis functions are rational 
expressions. 

3.4. Inf-sup testing 

Using the discretization procedure, the terms in (2e) can be 
expressed in matrix form as: 

Fig. 7. (a) The original square domain Ω, whose sides are equally divided into N = 2 equal segments. (b) In order to introduce distortion, the middle horizontal 
segment is tilted upwards, whereas the middle vertical segment is tilted to the right. In this figure, the mesh distortion parameter is given by Δ = 0.4. (c) Each cell in 
(b) is subdivided into four other cells. 
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∫

Ω
qh∇ ⋅ vh dΩ = Q̃T B̄ Ṽ,

‖vh‖
2
H1(Ω) =

∫

Ω
(vh ⋅ vh +∇vh : ∇vh)dΩ = ṼT K̄ Ṽ, (3f)  

Fig. 8. Convergence curves for the OFE1/Q0 pair. The errors are calculated with respect to the Q2/Q1 reference solution from Fig. 4, using (4c). (a) Error in the 
velocity. (b) Error in the pressure. The approximate slopes s are taken from Table 2, and Δ is the mesh distortion parameter. 

Fig. 9. Examples of distorted meshes, for which N = 16. (a) Distortion parameter Δ = 0.5. (b) Distortion parameter Δ = 0.7.  

Table 2 
Relative errors for the OFE1/Q0 pair.  

Δ = 0 Δ = 0.5 Δ = 0.7 

εu(h) ≃ C1h1.8466 εu(h) ≃ C2h1.0920 εu(h) ≃ C3h1.4794 

εp(h) ≃ C4h0.8921 εp(h) ≃ C5h0.8178 εp(h) ≃ C6h1.1022  
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‖qh‖
2
L2(Ω) =

∫

Ω
|qh|

2dΩ = Q̃T Ȳ Q̃.

The vectors Ṽ and Q̃ collect the DoF’s in the expansions of vh and qh, 
respectively. These vectors are pre- and post-multiplied by suitable 
matrices B̄, K̄, and Ȳ. We point out that, because the velocity field vh 

belongs to X0
h , i.e., vh has zero trace along the Dirichlet boundary ΓD, the 

DoF’s associated with nodes located along ΓD (and at its endpoints) must 
effectively be removed from the expansion of vh (because they are 
constrained to be zero), and consequently the corresponding rows and 
columns must be removed from matrices B̄ and K̄. For example, if the 
discrete velocity field vh =

(
vh,1, vh,2

)
is calculated within the space 

OFE1, we saw in Section 3.2 that the components vh,1 and vh,2 require 3 
DoF’s per node. Suppose there are ND nodes located along ΓD (plus the 
endpoints). All three DoF’s associated with each of these nodes must be 
set to zero, so that the complete specification of vh,1 now requires 
3(N − ND) DoF’s, and likewise for vh,2. In this way the complete vector Ṽ 
collecting all DoF’s in the expansion of vh (to be used in (3f)) has 
6(N − ND) DoF’s. The same applies for approximations within the space 

Fig. 10. (a) The inf-sup curves calculated in a sequence of uniform meshes with N × N square elements each. Results concerning the OFE1/OFE0 and OFE2/OFE0 

pairs, see Sections 4.2 and 4.3, respectively. For both cases, the inf-sup constants stabilize at a positive value and do not decay as h decreases. (b) Convergence curves 
for the velocity, using the OFE1/OFE0 pair. The errors are calculated with respect to the Q2/Q1 reference solution from Fig. 4, using (4c) . (c) Convergence curves for 
the pressure. The approximate slopes s are taken from Table 3, and Δ is the mesh distortion parameter. 

Table 3 
Relative errors for the OFE1/OFE0 pair.  

Δ = 0 Δ = 0.5 Δ = 0.7 

εu(h) ≃ D1h1.8880 εu(h) ≃ D2h1.0257 εu(h) ≃ D3h1.4442 

εp(h) ≃ D4h1.0187 εp(h) ≃ D5h0.8126 εp(h) ≃ D6h1.1286  
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OFE2. Substituting the expressions from (3f), the inf-sup condition (2e) 
becomes: 

There is some constant βh > 0 such that 

inf
Q̃∈ℝM\{0}

sup
Ṽ∈ℝK\{0}

Q̃T B̄ Ṽ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Q̃T Ȳ Q̃
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ṼT K̄ Ṽ
√ ≥ βh, (3g)  

where K and M denote the dimensions of vectors Ṽ (after treating the 
zero DoF’s, as described above) and Q̃, respectively. We assume that 
ker B̄T = {0}, since if ker B̄T ∕= {0} we see that (3g) cannot be satisfied. 
Then we consider 

inf
Q̃∈ℝM\{0}

sup
Ṽ∈ℝK\{0}

Q̃T B̄ Ṽ
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

Q̃T Ȳ Q̃
√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ṼT K̄ Ṽ
√ =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μmin(h)

√
,

where μmin(h) is the smallest eigenvalue in the problem: 

B̄ K̄− 1 B̄T Q̃ = μ Y Q̃, (3h)  

see [3,14]. If μmin(h) is positive, we can choose the constant βh in (3g) as 
βh =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μmin(h)

√
. In this way, (3g) and ultimately (2e) are satisfied. For a 

given partition Q h (characterized by a discretization length h), the 
eigenproblem (3h) tells if the discrete Navier-Stokes problem is free of 
spurious pressure solutions, i.e., if the pressure field is unique. The idea 
behind the Chapelle-Bathe inf-sup testing is: 

1. Consider a sequence of partitions Q h for decreasing values of h (i. 
e., the meshes are getting finer and finer); 

2. For each partition Q h, compute the value of βh =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
μmin(h)

√
in (3h); 

3. Plot the sequence of values βh in a graph as h decreases. If the curve 
reaches a ‘plateau’ (i.e., the values of βh are ‘locked’ above a certain 

Fig. 11. Finite element solution, calculated using the OFE1/OFE0 pair, using a uniform mesh formed by 32 × 32 square elements. (a) Horizontal component of the 
velocity field. (b) Vertical component of the velocity field. (c) The pressure field. (d) Error in the pressure for a sequence of uniform meshes (Δ = 0), using the 
OFE1/Q0 pair (black curve in Fig. 8b, shown as a dashed curve here), and using the OFE1/OFE0 pair (black curve in Fig. 10c). The slopes s are taken from Tables 2 
and 3. 
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positive value), we conclude that βh will be positive for all decreasing h. 
Of course, if the curve in Step 3 exhibits the ‘plateau’ profile – that is, 

the inf-sup test is passed – we can only conclude that we are able to find 
an inf-sup constant β that is independent of h for the specific sequence of 
meshes used. For this reason, we conservatively repeat the test using also 

other sequences of meshes, like distorted meshes, and then if the test is 
passed for a sufficient number of discretizations, it is our experience that 
the element used is stable, and hence the solutions will not provide 
spurious pressures. 

4. Numerical solutions on convergence and inf-sup stability 

This section presents a study of the convergence and inf-sup stability 
of the finite element spaces under consideration. We are interested in 
solving the homogeneous Stokes system, posed in the square domain 
Ω = ( − 1, 1)× ( − 1,1): 

Find (u, p) such that 

− ∇2u +∇p = 0, in Ω,

∇ ⋅ u = 0, in Ω, (4a)  

u = gD, on ΓD,

n̂ ⋅ ¯̄σ = 0, on ΓN .

The Dirichlet boundary ΓD corresponds to the top, bottom, and left 
walls, in addition to the upper half of the right wall, see Fig. 3. The 
Neumann boundary ΓN corresponds to the lower half of the right wall. 
The essential boundary conditions are given by the ‘no-slip’ condition 
gD = [0, 0]T along the top and bottom walls; along the left wall (x = − 1) 
they are given by: 

gD =

{

[0, 0]T , if − 1 ≤ y < 0,
[4y(1 − y), 0 ]T , if 0 ≤ y ≤ 1,

(4b)  

and along the upper half of the right wall (x = 1), they are also given by 
gD = [0,0]T, if 0 ≤ y ≤ 1. This problem describes, in a very simplified 
manner, the flow of a viscous fluid that enters the domain Ω through the 
upper half of the left wall (the ‘inlet’), and leaves the domain through 
the lower half of the right wall (the ‘outlet’), see Fig. 4d. The weak form 
of (4a) can be obtained from the formulation for the complete Navier- 
Stokes problem (discussed in Sections 2.2 and 2.3) by omitting the 
nonlinear terms. The problem (4a)-(4b) does not admit analytical so-
lution, and so the results calculated in the next sections will be compared 

Fig. 12. Convergence curves for the Q2/Q1 pair. The errors are calculated with respect to the reference solution from Fig. 4 (which uses a more refined mesh), using 
(4c). (a) Error in the velocity. (b) Error in the pressure. The slopes s are taken from Table 4, and Δ is the mesh distortion parameter. 

Table 4 
Relative errors for the Q2/Q1 pair.  

Δ = 0 Δ = 0.5 Δ = 0.7 

εu(h) ≃ E1h1.5500 εu(h) ≃ E2h1.4258 εu(h) ≃ E3h0.9616 

εp(h) ≃ E4h0.6300 εp(h) ≃ E5h0.8191 εp(h) ≃ E6h0.6486  

Fig. 13. Convergence curves for the OFE2/OFE0 and Q2/Q1 pairs, when the 
mesh distortion parameter is given by Δ = 0.7. The errors in the velocity are 
calculated with respect to the reference solution from Fig. 4, using (4c). 
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with a finite element reference solution (uRef , pRef ). This solution is ob-
tained by solving problem (4a)-(4b) in a very fine uniform mesh of 
128 × 128 elements (length and height of Ω subdivided equally). The 
components of the velocity are approximated by biquadratic basis 
functions (traditional 9-node elements), whereas the pressure is 
approximated by bilinear basis functions (traditional 4-node elements). 
This pair is sometimes referred to in the literature as the Q2/Q1 element, 
and it passes the inf-sup condition and test [3,20]. The reference solu-
tion is illustrated in Fig. 4. 

4.1. Discontinuous pressure approximations 

In this subsection we first solve problem (4a)-(4b) using bilinear 
basis functions (traditional 4-node elements) for the velocity, and con-
stant basis functions for the pressure (which leads to a piecewise con-
stant, and hence discontinuous approximation). This pair is sometimes 
referred to in the literature as the Q1/Q0 element [20]. We again use 
uniform meshes, i.e., the square domain Ω is uniformly divided into N ×

N elements (i.e., little squares), where N ∈ {4,8, 16,32,64}. The dis-
cretization length h is defined as the side of Ω divided by N, i.e., h =

2/N. This pair is easy to code, and for a given fixed mesh (characterized 

by a fixed h), reasonable solutions for the velocity field uh can be ob-
tained (see Fig. 5), although the pressure ph may become contaminated 
by the checkerboard pattern [3,20], see Fig. 5c. Moreover, for each fixed 
mesh we can find a positive constant βh that satisfies the inf-sup con-
dition stated in Section 3.4. However, as the meshes become more 
refined (i.e., as h decreases), these constants βh become progressively 
smaller, as attested by Fig. 5d. So the pair Q1/Q0 does not pass the inf- 
sup test. 

We propose a modification: Instead of using bilinear basis functions 
(traditional 4-node elements) for approximating the velocity, we use the 
OFE scheme with monomials of degree 1 in the local bases, i.e., the space 
OFE1 (Section 3.2). The pressure is still approximated by piecewise 
constant functions. The resulting pair is denoted OFE1/Q0. In what 
regards the Dirichlet conditions, they are imposed directly in the OFE. 

Since a node I located at xI ∈ ΓD carries 3 DoF’s per velocity 
component, we make the first DoF (associated with the constant term in 
the local basis) equal to the prescribed value of the field at the location 
xI. The other DoF’s are taken to be zero, see Section 3.1. We now solve 
problem (4a)-(4b) and perform the inf-sup test using this element. We 
again obtain a good solution for the velocity uh, but this time the pres-
sure ph is not contaminated by the checkerboard pattern, despite the fact 

Fig. 14. (a) Geometry (dimensionless units) and boundary conditions relative to the problem from Section 4.4. Inlet and outlet shown in red and green, respectively; 
no-slip walls shown in blue. (b) Portion of the mesh with 5,579 cells used for the different types of finite elements. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web version of this article.) 
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we are still using a discontinuous pressure approximation, see Fig. 6. 
Moreover, it can be seen that the OFE1/Q0 pair passes the inf-sup test, 
since the constants βh attain a plateau, and do not decrease towards zero 
(see Fig. 5d). 

Please notice that in the integration of the weak forms discretized 
with the Q1/Q0 and OFE1/Q0 pairs, we use the same rule in both cases 
(Gaussian quadrature, 3 x 3 points per element, see Section 3.3), so that 
the effort in the evaluation of the matrices is the same. The only dif-
ference is that, in the OFE scheme, we need to calculate the maximum 
distance rI at each node (see (3a)). This is a strong argument in favor of 
our OFE basis functions. 

In order to verify the behavior of the OFE1/Q0 pair on distorted 
meshes, we begin by constructing these meshes. First, we consider the 
square domain Ω̄ = [ − 1,1] × [ − 1,1], and subdivide each side into N = 2 
equal segments, thus resulting in 2 × 2 smaller squares, see Fig. 7a. 
Second, the middle horizontal segment is tilted upwards, so that the 
point (1,0) is moved to the point (1,Δ). And lastly, the middle vertical 
segment is tilted to the right, so that the point (0, 1) is moved to the point 
(Δ,1), see Fig. 7b. The parameter Δ controls the distortion of the mesh; 
the greater the value of Δ, the more distorted the mesh becomes. Of 
course, when Δ = 0, the mesh has no distortion. We now subdivide each 
one of the four cells into four other cells, by uniting the midpoints of 
their sides that lie opposite to each other. It can be verified that each side 
of the original square Ω has been divided into N = 4 segments. This 
results in a new mesh with 4 × 4 new cells, see Fig. 7c. The process 
continues, as the cells are further subdivided. For each N, we again 

define the discretization length as h = 2/N, and calculate the discrete 
solution (uh, ph) using the OFE1/Q0 pair. The relative errors in the L2 

norm (for the velocity field) and in the L2 norm (for the pressure) are 
calculated as 

εu(h) =

⃦
⃦uh − uRef

⃦
⃦

L2(Ω)⃦
⃦uRef

⃦
⃦

L2(Ω)

, and εp(h) =

⃦
⃦ph − pRef

⃦
⃦

L2(Ω)⃦
⃦pRef

⃦
⃦

L2(Ω)

. (4c)  

The results are displayed in Fig. 8. We first obtain a sequence of un-
distorted meshes (Δ = 0), for N ∈ {4,8, 16,32,64}, and calculate (4c) 
for each h. Then we repeat the process for a sequence of distorted meshes 
(Δ = 0.5), and again for a sequence of very distorted meshes (Δ = 0.7), 
see Fig. 9. We observe that the errors εu and εp converge ‘smoothly’ for 
the sequence of undistorted meshes. For the sequences of distorted 
meshes, despite the erratic behavior, there is still convergence. A 
linear regression applied to the graphs from Fig. 8 allows us to deduce 
the approximate behavior of the errors in (4c), see Table 2. Of course, 
C1,⋯,C6 are positive constants. This table reveals that, even for very 
distorted meshes, reasonable convergence rates can be obtained. 

4.2. Continuous pressure approximations 

In this section we shall examine a new pair: The components of the 
velocity field uh are still approximated using the OFE scheme with 
monomials of degree 1 in the local bases (i.e., uh is calculated within the 
space OFE1, as in Section 4.1), whereas the pressure ph will be 

Fig. 15. The horizontal component uh,1 provided by the OFE1/OFE0 pair. (a) Solution at Re = 5. (b) Solution at Re = 50. (c) Solution at Re = 150. (d) Solution at 
Re = 250. 
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approximated using the OFE scheme with monomials of degree 0 in the 
local bases (i.e., ph will be calculated within the space OFE0, see Section 
3.2). The resulting pair is denoted OFE1/OFE0. The first step is to 
examine the inf-sup stability of this pair. We set up a sequence of uni-
form meshes by subdividing the domain Ω into N × N squares, for 
N ∈ {4,8,16,32,64}. The discretization length h is defined as in Section 
4.1. The result is displayed in Fig. 10a, which shows that the pair 
OFE1/OFE0 clearly passed the inf-sup test, since the constants βh again 
stabilize at a positive value away from zero. The results for the 
convergence analysis are shown in Fig. 10b and in Fig. 10c. We obtained 
a similar behavior as that from the previous section, i.e., the errors (4c) 
converge ‘smoothly’ for the sequence of undistorted meshes, 
and converge ‘erratically’ for the sequences of distorted meshes. The 
approximate convergence rates of the errors are shown in Table 3 
(D1, ⋯ , D6 are positive constants). 

If we compare the results in Table 2 and in Table 3, we see that the 
convergence rates for the error in the velocity εu and in the pressure εp 
are almost equal. This is reasonable, since the velocity field is approxi-
mated in the same way in both cases, whereas the pressure is approxi-
mated by zero-order basis functions from traditional FEM (which 
happen to be discontinuous) in the first case, and by zero-order basis 
functions from the OFE (which happen to be continuous) in the second 
case. When precision is not required for the pressure solution, the 

OFE1/Q0 pair becomes an attractive choice, since it is easier to imple-
ment than the OFE1/OFE0 pair. Both pairs pass the inf-sup test, and 
present a similar cost (the first uses 1 DoF per element for approximating 
the pressure, whereas the second uses 1 DoF per node). 

According to Figs. 11a and 11b, the velocity solutions for the 
OFE1/OFE0 pair are similar to those for the OFE1/Q0 pair (see Figs. 6a 
and 6b). However, a comparison between Fig. 11c and Fig. 6c shows that 
the approximation for the pressure is better when the OFE1/OFE0 pair is 
used. This is expected, as it uses a continuous approximation for the 
pressure. We point out that, despite presenting a similar rate of 
convergence, the error in the pressure εp for the OFE1/OFE0 pair is 
smaller than that for the OFE1/Q0 pair, as it should. This can be verified 
when we plot the error εp for both cases and for a sequence of undis-
torted meshes (Δ = 0), see Fig. 11d (in other words, the constants C4 in 
Table 2 and D4 in Table 3 are different). 

We also performed a convergence analysis for the traditional Q2/Q1 
pair, in order to see how it behaves in distorted meshes, see Fig. 12. We 
did as in the previous two cases, i.e., we considered a sequence of meshes 
with N × N subdivisions, where N ∈ {4,8, 16,32,64}. It can be observed 
that the errors (4c) once more converge ‘smoothly’ for the sequence of 
undistorted meshes, and converge ‘erratically’ for the sequences of 
distorted meshes. Table 4 shows the approximate behavior of the errors 
for this element (E1, ⋯ , E6 are positive constants). 

Fig. 16. The vertical component uh,2 provided by the OFE1/OFE0 pair. (a) Solution at Re = 5. (b) Solution at Re = 50. (c) Solution at Re = 150. (d) Solution at Re =

250. 
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A comparison of Table 4 with Tables 2 and 3 reveals two charac-
teristics. First, when uniform meshes (Δ = 0) are employed, the 
convergence rates for the Q2/Q1 pair are smaller than those for the 
OFE1/Q0 and OFE1/OFE0 pairs. This is remarkable, since in the Q2/Q1 
scheme the velocity field is approximated by second-order (biquadratic) 
basis functions from traditional FEM, whereas in the OFE1/Q0 and 
OFE1/OFE0 schemes the velocity field is approximated by first-order 
(linear) local basis functions. And second, the degradation in the 
convergence rate for εu when very distorted meshes are used (Δ = 0.7) 
is slightly larger for the traditional biquadratic 9-node element (Q2) than 
for the linear OFE element (OFE1). 

We conclude this section by observing that the pairs we have found 
(namely, the OFE1/Q0 and the OFE1/OFE0):  

• are low-order (zero and first-order basis functions, at most, which 
lead to a low number of DoF’s);  

• are stable (i.e., they pass the inf-sup test);  
• are less sensitive to mesh distortions than the traditional Q2/Q1 pair 

(to obtain less distortion sensitivity for the OFE, the nodal basis 
functions need to be increased as shown in the paper);  

• do not resort to artifices like ‘bubble functions’ or ‘macroelements’ 
(in which the pressure is approximated by a given mesh and the 
velocity is approximated by a more refined mesh, see [3,20]). 

4.3. Higher-order velocity approximations and the AMORE paradigm 

The first-order approximations based on the OFE1/Q0 and 
OFE1/OFE0 pairs lead to a reasonably low number of DoF’s (as 
described above), and require few integration points (3 x 3 points per 
element). These features allow them to be used efficiently in the whole 
computational domain Ω, i.e., in all elements of the partition Q h, as we 
do in this paper. 

In second-order approximations, the components uh,1 and uh,2 of the 
velocity field are calculated within the space OFE2 (which uses 

quadratic terms in the local bases, see Section 3.2). When the pressure ph 
is calculated within the space OFE0 (which uses a constant term in the 
local bases), the resulting pair is denoted OFE2/OFE0. Fig. 10a shows 
that this pair passes the inf-sup test, since the constants βh do not decay 
towards zero. 

The OFE2/OFE0 pair can in principle also be used in the whole 
computational domain, if coarser meshes are used (because this pair 
requires 6 DoF’s per node for each component in the approximation of 
the velocity), see Section 4.5 below. However, the primary purpose of 
these elements is to be used within the AMORE paradigm (Automatic 
Meshing with Overlapping and Regular Elements) [6,27,28]. The idea is 
to produce a partition Q h in such a way that the cells in the central 
portions of the domain Ω are uniformly distributed, i.e., in two- 
dimensional analyses these interior cells are all square as seen in an 
undistorted finite-difference grid. The remaining parts of Ω closer to 
boundaries, interfaces and holes are then meshed with not-so-regular, 
possibly very distorted cells. In the discretization, traditional low- 
order finite element spaces are used in the regular undistorted ele-
ments (in the bulk of the domain), whereas the OFE spaces are used in 
the distorted elements (close to boundaries). A special procedure of 
coupling elements is devised to couple the approximations within those 
square regular elements with the OFE elements [6]. 

The AMORE paradigm has been successfully employed in the solu-
tion of problems of linear elastic solid mechanics [36]. Since the basic 
premise of the paradigm is to use traditional low-order elements in the 
uniform mesh set up in the bulk of the domain, in two-dimensional 
analyses, traditional 4-node elements, frequently with incompatible 
modes, are chosen [36]. Of course, for problems in solid and fluid me-
chanics of incompressible media, the traditional low-order Q1/Q0 pair 
cannot be used since it does not pass the inf-sup test and yields pressure 
solutions contaminated by the checkerboard pattern (see Section 4.1). 
The OFE1/Q0 and OFE1/OFE0 pairs, in solid mechanics possibly with 
incompatible modes, may be a good choice. In fluid mechanics control 
volume elements may be preferred for the interior domain. But 

Fig. 17. The pressure field ph at Re = 250. (a) Reference solution provided by the Q2/Q1 pair. (b) Solution provided by the OFE1/OFE0 pair (continuous 
approximation). (c) Solution provided by the OFE1/Q0 pair (discontinuous approximation). 
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regardless of which elements are used in the uniform mesh, our second- 
order OFE2/OFE0 pair can be used in the remaining distorted elements 
close to the boundaries. 

Since the OFE2/OFE0 pair will be used primarily in distorted ele-
ments, we solved problem (4a)-(4b), again considering a sequence of 
very distorted meshes (Δ = 0.7) with N × N subdivisions each, where 
N ∈ {4,8,16,32,64}. In Fig. 13 we compare the errors (4c) provided by 
the OFE2/OFE0 pair with those provided by the Q2/Q1 pair (red curve in 
Fig.12a). We see that these errors are similar for a sufficiently small h. 
However, the convergence of the error in the OFE2/OFE0 pair is less 
erratic than the convergence of the error in the Q2/Q1 pair. Indeed, a 
linear regression reveals that the error provided by the OFE2/OFE0 pair 
behaves as εu(h) ≃ Ch1.3957, whereas the error provided by the Q2/Q1 

pair behaves as εu(h) ≃ Dh0.9616 , where C and D are positive constants 

(see the first row in Table 4). 

4.4. Navier-Stokes flow over a step 

This benchmark problem describes the flow of a viscous fluid over a 
backward facing step, see Fig. 14a. The fluid enters the domain through 
the leftmost wall (line segment x = 0 and 0 ≤ y ≤ 2). Along this line 
segment, the prescribed inflow velocity is given by gD = [y(2 − y),0 ]

T. 
On the rightmost wall (line segment x = 44 and − 2 < y < 2), we impose 
the homogeneous Neumann condition (n̂ ⋅ ¯̄σ = 0). Finally, the no-slip 
condition gD = [0,0]T is prescribed along the other walls. 

The goal of this Section is to solve the Navier-Stokes problem (2a), 
characterized by Reynolds numbers between Re = 5 and Re = 250. The 
body force is assumed to be zero, i.e., f = 0. The mesh is formed by 

Fig. 18. Field profiles at Re = 250, provided by the OFE1/Q0 and OFE1/OFE0 pairs. (a) Horizontal component of the velocity field uh,1 calculated along the vertical 
line segment x = 7 and − 2 ≤ y ≤ 2 (dotted orange line in Fig. 14a). (b) Pressure field ph along the top wall (horizontal line segment 0 ≤ x ≤ 44 and y = 2). (c) 
Zooming in on the region marked with a rectangle in Fig. 18b. Reference solution given by the Q2/Q1 pair, using the mesh of cells in Fig. 14b. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 19. (a) Geometry (dimensionless units) and boundary conditions relative to the problem from Section 4.5. Inlet and outlet shown in red and green, respectively; 
no-slip walls shown in blue. (b) Portion of the mesh with 4,767 cells used for the different types of finite elements. (c) Portion of a coarser mesh, with 1,781 cells. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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5,579 cells, a portion of which is illustrated in Fig. 14b. The discretized 
components uh,1 and uh,2 provided by the OFE1/OFE0 pair are plotted in 
Figs. 15 and 16, respectively. Figures 17b and 17c illustrate the pressure 
field ph provided by the OFE1/OFE0 pair (continuous pressure) and by 
the OFE1/Q0 pair (discontinuous pressure), respectively, for Re = 250. 
We note an almost perfect agreement between the reference Q2/Q1 and 
OFE1/OFE0 pressure solutions (Figs. 17a and 17b, respectively). 

We see that the velocity solutions calculated using the OFE1/OFE0 and 
the OFE1/Q0 pairs look similar to each other (see Fig. 18a, which shows the 
component uh,1 along the vertical segment x = 7 and − 2 ≤ y ≤ 2). How-
ever, when we examine the pressure profile along the top wall (horizontal 
line segment 0 ≤ x ≤ 44 and y = 2) in Figs. 18b and 18c, the ‘staircase’ 
appearance of the solution provided by the OFE1/Q0 pair becomes evident. 
This is expected, since this pair employs constant basis functions, leading to 
a piecewise constant (discontinuous) approximation. The pressure solution 
provided by the OFE1/OFE0 pair agrees well with the reference solution, 
and in a sense, the solution provided by the OFE1/Q0 pair also does, despite 
the ‘staircase’ appearance. 

4.5. Navier-Stokes flow around a T-shaped object 

In this section we examine the flow along a channel in which a T- 
shaped object has been embedded, see Fig. 19a. The prescribed inflow 

velocity along the inlet (line segment x = − 2 and − 1 ≤ y ≤ 1) is gD =

[2(1 + y)(1 − y),0 ]
T. On the rightmost wall (line segment x = 10 and 

− 1 < y < 1), we impose the homogeneous Neumann condition (n̂ ⋅ ¯̄σ =

0). Finally, the no-slip condition gD = [0,0]T is prescribed along the 
other walls, in addition to the contour of the object. We solve the Navier- 
Stokes problem (2a), characterized by a Reynolds number equal to Re =

50. The body force is again assumed to be zero, i.e., f = 0. Two different 
solution schemes are used: 

Linear approximation (OFE1/OFE0 pair): Mesh containing 4,767 
cells, leading to 34,979 DoF’s; 

Quadratic approximation (OFE2/OFE0 pair): Mesh containing 1,781 
cells, leading to 24,947 DoF’s. 

The velocity and pressure fields corresponding to the OFE1/OFE0 
pair are shown in Fig. 20. The fields corresponding to the OFE2/OFE0 
pair (not shown) are very similar. Please note that the quadratic 
approximation uses a much coarser mesh (Fig. 19c), having approxi-
mately one third of the number of cells in the mesh used for the linear 
approximation (Fig. 19b). Moreover, the quadratic approximation leads 
to roughly 10,000 DoF’s less than the linear approximation. 

So despite requiring a coarser mesh, the quadratic approximation 
yields similar results as those provided by the linear approximation, as 
attested by Figs. 21a and 21b, which show the horizontal and vertical 
velocity components uh,1 and uh,2 along the vertical line segment x = 1 

Fig. 20. The fields at Re = 50 provided by the OFE1/OFE0 pair. (a) The horizontal component of the velocity field uh,1. (b) The vertical component uh,2. (c) The 
pressure field ph. 
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and − 1 ≤ y ≤ 1, respectively. 
These results demonstrate the ability of the OFE2/OFE0 pair to 

provide accurate solutions, even when coarse meshes are used. How-
ever, this pair is expensive, since it requires 6 DoF’s per node for each 
component of the velocity. But as discussed previously in Section 4.3, in 
the AMORE paradigm the OFE2/OFE0 pair shall be used only at those 
few distorted elements close to boundaries and interfaces, which 
correspond roughly to 2% of the total number of elements in the mesh. 

5. Concluding remarks 

The focus of this paper was on the presentation of a parameter-free 
two-field mixed formulation for the solution of Navier-Stokes prob-
lems with inf-sup stable pairs of finite elements. The velocity field and 
the pressure are approximated by low-order quadrilateral overlapping 
finite elements (OFE), a family of general-purpose elements recently 
introduced for the solution of problems in solid mechanics [6]. In this 
paper we extended the OFE method to the study of fluid flows using only 
OFE in the mesh and also briefly discussed the important case of using 
traditional finite elements or control volume elements for fluid flows, 
coupling elements and overlapping elements, like used in AMORE [6]. 

We presented some theoretical aspects concerning the inf-sup sta-
bility and the well-posedness of the two-field mixed formulation, and 
verified that three pairs of velocity and pressure approximations satisfy 
the inf-sup condition using the Chapelle-Bathe numerical test. These 
pairs of velocity and pressure approximations could also directly be used 
to solve incompressible solid media by simply using displacements 
instead of velocities as unknowns. 

Considering future investigations, other overlapping finite elements 
could be used in the discretization of the velocity and pressure fields, in 
particular for three-dimensional solutions. The idea is to use the tetra-
hedral, brick, prism, and pyramid elements proposed in [36,37] in the 
approximation of the velocity and introduce pressure fields. Then we 
must determine which pairs composed of these elements satisfy the inf- 
sup condition. The research work should also investigate the solution of 
flows at high Reynolds numbers [2,7,8,10,34], fluid flows with heat 
transfer [24], and fluid flows in general multiphysics applications 
[13,30]. 

An important additional research area is to study the AMORE scheme 
with the flexibility to use regular elements and OFE described by 
different nodal bases, that is, low- and high-order bases. A high-order 
basis might be used sparingly and only when the elements are very 
distorted. Indeed, it is a strength of using the OFE not having to change 
the mesh in an adaptive solution in order to reach a higher accuracy. 
Using this approach with a suitable error measure, combined with the 
generality and efficiency in the assemblage and solution of the govern-
ing equations, could lead to a very effective overall solution scheme in 
the analyses of solids, fluids and multiphysics. 
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Fig. 21. Field profiles at Re = 50, provided by the OFE1/OFE0 and OFE2/OFE0 pairs, along the vertical line segment x = 1 and − 1 ≤ y ≤ 1 (dotted orange line in 
Fig. 19a). (a) Horizontal component of the velocity field uh,1. (b) Vertical component of the velocity field uh,2. Reference solution given by the Q2/Q1 pair, using the 
mesh of cells in Fig. 19b. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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